Bioorthogonal oxime ligation mediated in vivo cancer targeting† †Electronic supplementary information (ESI) available: Synthesis and characterization of compounds and nanoparticles, in vitro and in vivo tumor cell labelling with liposomes, PET/CT imaging and biodistribution. See DOI: 10.1039/c5sc00063g Click here for additional data file.

نویسندگان

  • Li Tang
  • Qian Yin
  • Yunxiang Xu
  • Qin Zhou
  • Kaimin Cai
  • Jonathan Yen
  • Lawrence W. Dobrucki
  • Jianjun Cheng
چکیده

Current cancer targeting relying on specific biological interaction between cell surface antigen and respective antibody or its analogue has proven to be effective in the treatment of different cancers; however, this strategy has its own limitations, such as heterogeneity of cancer cells and immunogenicity of the biomacromolecule binding ligands. Bioorthogonal chemical conjugation has emerged as an attractive alternative to biological interaction for in vivo cancer targeting. Here, we report an in vivo cancer targeting strategy mediated by bioorthogonal oxime ligation. Oxyamine group, the artificial target, is introduced onto 4T1 murine breast cancer cells through liposome delivery and fusion. Poly(ethylene glycol) -polylactide (PEG-PLA) nanoparticle (NP) is surface-functionalized with aldehyde groups as targeting ligands. The improved in vivo cancer targeting of PEG-PLA NPs is achieved through specific and efficient chemical reaction between the oxyamine and aldehyde groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioorthogonal oxime ligation mediated in vivo cancer targeting

Department of Materials Science and Urbana–Champaign, 1304 West Green S [email protected]; Fax: +1-217-333-2736 Department of Pharmaceutical Science, Guangzhou, Guangdong, 510006, China Department of Bioengineering, University o IL 61801, USA † Electronic supplementary informatio characterization of compounds and nan cell labelling with liposomes, PET/CT im 10.1039/c5sc00063g ‡ Contributed ...

متن کامل

Emissive nanoparticles from pyridinium-substituted tetraphenylethylene salts: imaging and selective cytotoxicity towards cancer cells in vitro and in vivo by varying counter anions† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02395a Click here for additional data file.

Chemotherapeutics specifically targeting cancer cells without damaging healthy cells is the long-awaited goal of cancer treatment. In this paper, a series of nanoparticles (NanoTPES 1–4) assembled from pyridinium-substituted tetraphenylethylene salts were synthesized and investigated both in vitro and in vivo for this purpose. By changing the counter anions, NanoTPES 1–4 exhibit tunable emissio...

متن کامل

Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels–Alder reactions. Potential applications for pretargeted in vivo PET imaging† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02933g Click here for additional data file.

Pretargeted PET imaging has emerged as an effective two-step in vivo approach that combines the superior affinity and selectivity of antibodies with the rapid pharmacokinetics and favorable dosimetry of smaller molecules radiolabeled with short-lived radionuclides. This approach can be based on the bioorthogonal inverse-electron-demand Diels–Alder (IEDDA) reaction between tetrazines and trans-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015